

## **NOAA**FISHERIES

Alaska
Fisheries
Science Center
Auke Bay
Laboratories
Juneau, Alaska

# Introduction to Data Management; Collection, Sharing, and Hosting

5th FiSCAO ToR 4

Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean

Ottawa, Canada

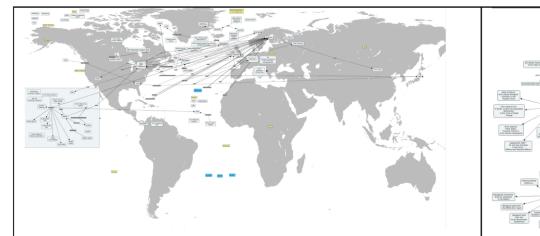
October 26, 2017

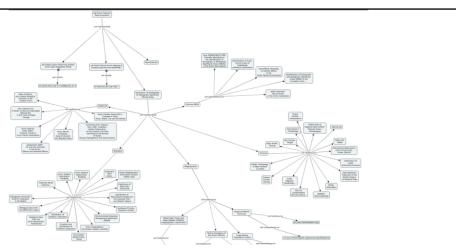
#### **Evolution of Data Management Terms of Reference in FiSCAO**

#### (2015) 3rd FiSCAO ToR 1:

... establishing an inventory of research and monitoring programs and preparing a report on the status of and gaps in knowledge on the distribution and abundance of fish in the central Arctic Ocean. ... and ... immediately adjacent shelf areas ...

#### (2016) 4<sup>th</sup> FiSCAO ToR 1:


Complete the synthesis of knowledge ... call for existing data and analyses of the CAO from science organizations of the parties. ... identify the priorities for research and monitoring gaps.


#### (2017) 5th FiSCAO ToR 4:

**Develop data collection, sharing, and hosting protocols** that outline the details of what and how data shall be collected, shared, and hosted for consideration by the Parties.

## 3rd FiSCAO ToR 1: Connecting to IASC-SAON Arctic Data Committee

Mapping the Arctic Ocean Fisheries Data Ecosystem: using network science and linked data to enhance data access





Peter L. Pulsifer, PhD

Research Scientist, National Snow and Ice Data Center, University of Colorado Chair, IASC-SAON Arctic Data Committee

#### 4th FiSCAO ToR 1:

Complete the synthesis of knowledge ... call for existing data and analyses of the CAO from science organizations of the parties ...

#### FiSCAO Fish Database, 9,405 records (2016) species by lat long

| ables <u></u>                                                                                  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Table 1. Species of fish documented to occur within the High Seas area identifying the species |  |  |  |  |  |  |  |  |  |
| with potential for future commercial harvests                                                  |  |  |  |  |  |  |  |  |  |
| Table 1.1 Sampling sites for fish species on the High Seas of the central Arctic               |  |  |  |  |  |  |  |  |  |
| Table 1.2. Fish species of documented occurrence in LMEs adjacent to the High Seas             |  |  |  |  |  |  |  |  |  |
| presented in alphabetical order by family and scientific name with common name and status      |  |  |  |  |  |  |  |  |  |
| of commercial potential                                                                        |  |  |  |  |  |  |  |  |  |
| Table 1.2A. Invertebrate species of documented occurrence in LMEs adjacent to the High Seas    |  |  |  |  |  |  |  |  |  |
| presented in alphabetical order by family and scientific name with common name and status      |  |  |  |  |  |  |  |  |  |
| of commercial potential.                                                                       |  |  |  |  |  |  |  |  |  |
| Table 1.3. Alphabetical List of Fish and Invertebrates Species Known from Waters Surrounding   |  |  |  |  |  |  |  |  |  |
| the High Seas of the Central Arctic                                                            |  |  |  |  |  |  |  |  |  |

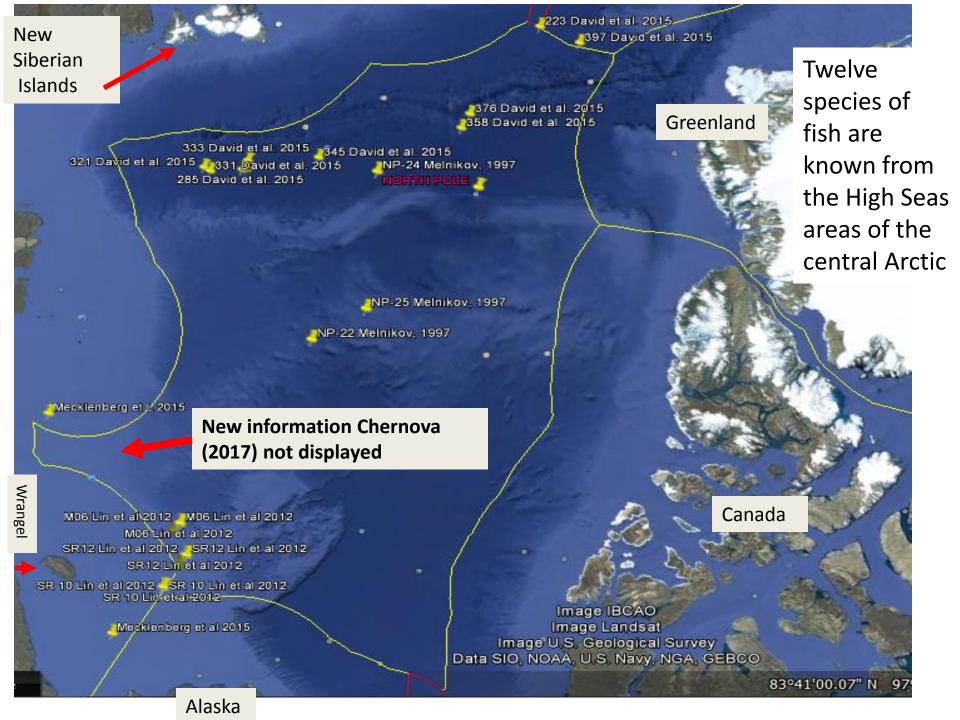
### Arctic Fish Species Locality Data

|   | Α         | В                            | C    | D    | E          | F           | G                        | Н          | 1             | J                   | K       |     |
|---|-----------|------------------------------|------|------|------------|-------------|--------------------------|------------|---------------|---------------------|---------|-----|
|   | N Species | Binomial                     | XCAO | Comm | Lat        | Long        | Reference & Station      | <u>LME</u> | Family        | Common name         | Depth r | n   |
| 5 | 15        | Liparis fabricii             | Yes  | No   | 74 29.86 N | 169 00.08 W | Lin et al. 2012 SR12     | CenArctic  | Liparidae     | Gelatinous seasnail | 177     | Fre |
|   | 15        | Liparis fabricii             | Yes  | No   | 73 59.69 N | 168 59.25 W | Lin et al. 2012 SR11     | CenArctic  | Liparidae     | Gelatinous seasnail | 170     | Tri |
| ' | 15        | Liparis fabricii             | Yes  | No   | 83 N       | 177 W       | Melnikov, 1997 NP-22     | CenArctic  | Liparidae     | Gelatinous seasnail | ??      | ??  |
| 3 | 15        | Liparis fabricii             | Yes  | No   | 88 N       | 126 E       | Melnikov, 1997 NP-25     | CenArctic  | Liparidae     | Gelatinous seasnail | ??      | ??  |
| ) | 15        | Liparis fabricii             | Yes  | No   | 74.4839 N  | -165.9670 W | Mecklenberg et al T1 20: | CenArctic  | Liparidae     | Gelatinous seasnail | 367     | Ot  |
| ) | 16        | Lycodes adolfi               | Yes  | No   | 76.5515 N  | -164.9670 W | Mecklenberg et al T1 203 | CenArctic  | Zoarcidae     | Adolph's eelpout    | 584     | Ot  |
|   | 17        | Lycodes adolfi               | Yes  | No   | 75 19.80 N | 171 59.85 W | Lin et al. 2012 M06      | CenArctic  | Zoarcidae     | Adolph's eelpout    | 580     | Fre |
| 2 | 18        | Lycodes polaris              | Yes  | No   | 73 59.69 N | 168 59.25 W | Lin et al. 2012 SR11     | CenArctic  | Zoarcidae     | Canadian eelpout    | 171     | Tri |
|   | 18        | Lycodes polaris              | Yes  | No   | 70.2761 N  | -176.6946 W | Mecklenberg et al T1 200 | CenArctic  | Zoarcidae     | Canadian eelpout    | 58      | Ot  |
| ļ | 18        | Lycodes polaris              | Yes  | No   | 69.6968 N  | -174.6196 W | Mecklenberg et al T1 203 | CenArctic  | Zoarcidae     | Canadian eelpout    | 49      | Ot  |
|   | 19        | Lycodes saggittarius         | Yes  | No   | 75 19.80 N | 171 59.85 W | Lin et al. 2012 M06      | CenArctic  | Zoarcidae     | Archer eelpout      | 580     | Fre |
|   | 19        | Lycodes saggittarius         | Yes  | No   | 74 59.68 N | 172 01.87 W | Lin et al. 2012 M07      | CenArctic  | Zoarcidae     | Archer eelpout      | 315     | Fre |
| 7 | 20        | Lycodes seminudus            | Yes  | No   | 76.5515 N  | -164.9670 W | Mecklenberg et al T1 203 | CenArctic  | Zoarcidae     | Longear eelpout     | 584     | Ot  |
| 3 | 20        | Lycodes seminudus            | Yes  | No   | 74.4839 N  | -165.9670 W | Mecklenberg et al T1 200 | CenArctic  | Zoarcidae     | Longear eelpout     | 367     | Ot  |
|   | 21        | Lycodes seminudus            | Yes  | No   | 75 19.80 N | 171 59.85 W | Lin et al. 2012 M06      | CenArctic  | Zoarcidae     | Longear eelpout     | 580     | Fre |
| ) | 21        | Lycodes seminudus            | Yes  | No   | 74 59.68 N | 172 01.87 W | Lin et al. 2012 M07      | CenArctic  | Zoarcidae     | Longear eelpout     | 315     | Fre |
| l | 22        | Reinhardtius hippoglossoides | Yes  | Yes  | 74.4839 N  | -165.9670 W | Mecklenberg et al T1 200 | CenArctic  | Pleuronectida | Greenland halibut   | 367     | Ot  |
|   | 23        | Reinhardtius hippoglossoides | Yes  | Yes  | 74 59.68 N | 172 01.87 W | Lin et al. 2012 M07      | CenArctic  | Pleuronectida | Greenland halibut   | 315     | Fre |
|   | 24        | Triglops nybelini            | Yes  | No   | 74.4839 N  | -165.9670 W | Mecklenberg et al T1 200 | CenArctic  | Cottidae      | Bigeye sculpin      | 367     | Ot  |
|   | 25        | Triglops pingelii            | Yes  | No   | 70.2761 N  | -176.6946 W | Mecklenberg et al T1 203 | CenArctic  | Cottidae      | Ribbed sculpin      | 58      | Ot  |
|   | 25        | Triglops pingelii            | Yes  | No   | 69.6968 N  | -174.6196 W | Mecklenberg et al T1 203 | CenArctic  | Cottidae      | Ribbed sculpin      | 49      | Ot  |





# Cottunculus microps


**SCULPINS (2)** 



**EELPOUTS (5)** 



**CODS (2)** 



#### 4<sup>th</sup> FiSCAO Report – Coordination; Data Management Page 31

Nations should work to find agreement on data management policies that would permit sharing of all monitoring and research data. Adhering to open data policies would enable the best and fastest scientific results. Potentially suitable data management policies are already available (e.g., DBO, SAON and IASC, ICES). Such policies could include guarantees for data QA/QC, standard formats and procedures for metadata, and protocols for data exchange (interoperability) that enable data processing independent of software and hardware limitations. Contributing nations would be asked to participate in developing a "distributed" data management system. Distributed systems leave the data and their maintenance to the originator. Distributed systems have search and query capabilities available that can quickly navigate fisheries and ecosystem data in order to aggregate data according to search criteria designed for specific analytic purposes. Copies of the databases would be held by the originator, and potentially by national archives, and third parties such as ICES and AOOS. In the case of third party storage, public data sharing limitations and protocols would be needed. More information on data management is available from the third Fiscao meeting (Pulsifer, 2015).

### **END**